
Devoir surveillé no 4 bis

Vendredi 9 janvier

Le sujet comporte 6 pages et est composé d’un problème et d’un exercice indépendants.

Les calculatrices sont interdites.

Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il le signale sur sa

copie et poursuit sa composition en expliquant les raisons des initiatives qu’il est amené à prendre.
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Approximation par des exponentielles-polynômes

L’objectif du problème est d’établir, par des méthodes euclidiennes, des théorèmes d’approximation
par des polynômes ou des exponentielles-polynômes de certaines fonctions définies sur [0, +Œ[ ou sur R.

Les parties I et II sont indépendantes. La partie III utilise les résultats des parties I et II.

Étant donné un intervalle I de R, on appelle fonction polynomiale sur I toute fonction de la forme

f : I æ R, x ‘æ
n

ÿ

k=0

⁄kxk, où n est un entier naturel et ⁄0, . . . , ⁄n des nombres réels.

I. Résultats préliminaires

I.1. Étude d’une série entière

Pour tout réel x strictement positif, on pose

Γ(x) =

⁄ +Œ

0

tx≠1e≠tdt.

1) Montrer que la fonction Γ est bien définie, et à valeurs strictement positives.

2) À l’aide d’une intégration par parties que l’on justifiera avec soin, montrer que Γ(x + 1) = xΓ(x) pour
tout x > 0.

Soit – un réel strictement supérieur à ≠1. Pour tout n œ N, on pose an =
Γ(n + – + 1)

n!
.

3) Déterminer le rayon de convergence R de la série entière
ÿ

anxn.

4) Montrer que
Œ

ÿ

n=0

anxn =
Γ(– + 1)

(1 ≠ x)–+1
pour tout x œ] ≠ R, R[.

On pourra effectuer une permutation des symboles
Œ

ÿ

n=0

et
⁄ +Œ

0

, que l’on justifiera soigneusement.

I.2. Projections orthogonales

Dans cette partie, E désigne un R-espace vectoriel, pas nécessairement de dimension finie, muni d’un
produit scalaire È·, ·Í. On note Î · Î la norme associée à ce produit scalaire, définie par ÎxÎ = Èx, xÍ1/2

pour tout x œ E.

Soit F un sous-espace vectoriel différent de {0} et de dimension finie de E.

5) Donner la définition de la projection orthogonale fiF sur F .

On fixe (e1, . . . , en) une base orthonormale de F , et x un vecteur de E.

6) Montrer que fiF (x) =

n
ÿ

i=1

Èx, eiÍei.

7) Montrer enfin que

Îx ≠ fiF (x)Î2 = ÎxÎ2
≠

n
ÿ

i=1

Èx, eiÍ2.
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II. Polynômes de Laguerre

Dans toute cette partie, on fixe un réel – > ≠1, et on note E– l’ensemble des fonctions continues

f : [0, +Œ[æ R telles que l’intégrale
⁄ +Œ

0

x–e≠xf(x)2dx est convergente.

8) Montrer que, pour tout (a, b) œ R
2, |ab| Æ a2 + b2

2
.

9) En déduire que, si f et g sont deux éléments de E–, l’intégrale
⁄ +Œ

0

x–e≠xf(x)g(x)dx est convergente.

10) En déduire que E– est un sous-espace vectoriel de l’espace vectoriel C([0, +Œ[, R) des fonctions
continues de [0, +Œ[ vers R.

11) Montrer que toute fonction polynomiale sur [0, +Œ[ est élément de E–.

Pour tout entier naturel n, on définit les fonctions

Ïn :]0, +Œ[æ R, x ‘æ xn+–e≠x

et
Ân :]0, +Œ[æ R, x ‘æ x≠–exÏ(n)

n (x)

où la notation Ï
(n)
n désigne la dérivée d’ordre n de Ïn (avec la convention Ï

(0)
0 = Ï0).

12) Calculer Â0, Â1 et Â2.

13) Pour tout n œ N, montrer que la fonction Ân est polynomiale. Préciser son degré et son coefficient
dominant.

Dans la suite, on identifie Ân à son unique prolongement continu à [0, +Œ[, qui est une
fonction polynomiale sur [0, +Œ[. Cela permet de considérer Ân comme un élément de E–,
ce qu’on fera désormais.

Pour tout (f, g) œ E2
–

, on pose

Èf, gÍ =

⁄ +Œ

0

x–e≠xf(x)g(x)dx.

14) Montrer que È·, ·Í est un produit scalaire sur E–.

Dans la suite, on note Î · Î– la norme associée à ce produit scalaire, définie par

ÎfÎ– =

3⁄ +Œ

0

e≠xx–f(x)2dx

41/2

pour tout f œ E–.

15) Soit n un entier Ø 1. Pour tout entier k œ [[0, n ≠ 1]], établir que

Ï(k)
n (x) æ 0 quand x tend vers 0 par valeurs strictement positives,

et que
Ï(k)

n (x) = o
!

e≠

x

2

"

quand x æ +Œ.

16) Soit m et n deux entiers naturels. Montrer que

ÈÂm, ÂnÍ = (≠1)n

⁄ +Œ

0

Â(n)
m (x)Ïn(x)dx

En déduire que la famille (Ân)nœN est orthogonale pour le produit scalaire È·, ·Í.

17) Montrer que, pour tout n œ N, ÎÂnÎ2
–

= n! Γ(n + – + 1) (la fonction Γ a été définie dans la partie I).
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III. Approximation

On conserve les hypothèses et notations de la partie II. Pour tout entier naturel k, on définit la fonction

fk : [0, +Œ[æ R, x ‘æ e≠kx,

qui est élément de E– (on ne demande pas de le vérifier).

Pour tout N œ N, on note VN le sous-espace vectoriel de E– engendré par la famille finie (Ân)0ÆnÆN , et
on note fiN la projection orthogonale de E– sur VN .

18) Soit k œ N. Montrer l’existence de la somme
Œ

ÿ

n=0

Èfk, ÂnÍ2

ÎÂnÎ2
–

, et calculer sa valeur.

19) En déduire que, pour tout k œ N, Îfk ≠ fiN (fk)Î– æ 0 quand N æ +Œ.

Dans la suite, on note P le sous-espace vectoriel de E– constitué des fonctions polynomiales.

20) Montrer que, pour tout k œ N et tout Á > 0, il existe p œ P telle que Îfk ≠ pÎ– Æ Á.

Soit f : [0, +Œ[æ R une fonction continue tendant vers 0 en +Œ. Il est facile de vérifier (ce n’est pas
demandé) que f œ E–.

21) Montrer que, pour tout Á > 0, il existe un entier naturel n ainsi que des réels ⁄0, . . . , ⁄n tels que
.

.

.

.

.

f ≠

n
ÿ

k=0

⁄kfk

.

.

.

.

.

–

Æ Á.

On pourra utiliser la fonction

g : [0, 1] æ R, t ‘æ
;

f(≠ ln t) si t œ]0, 1]
0 si t = 0

et le résultat admis suivant : si „ : [0, 1] æ R est une fonction continue, alors, pour tout Á > 0, il existe
une fonction polynomiale p : [0, 1] æ R telle que |„(t) ≠ p(t)| Æ Á pour tout t œ [0, 1].

22) Montrer que, pour tout Á > 0, il existe p œ P telle que Îf ≠ pÎ– Æ Á.

23) Soit h : R æ R une fonction continue, paire et nulle en dehors d’un segment [≠A, A] (A > 0).
Montrer que, pour tout Á > 0, il existe une fonction polynomiale p : R æ R telle que

⁄ +Œ

≠Œ

1

h(x) ≠ p(x)e≠

x
2

2

22

dx Æ Á.

On pourra appliquer le résultat de la question 22) à la fonction f : [0, +Œ[æ R, x ‘æ h (
Ô

x) e
x

2 et à un
– bien choisi.

On peut montrer que le résultat de la question 23) est en réalité valable pour toute fonction h : R æ R

continue et de carré intégrable sur R.

Fin du problème
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Exercice 2. Décomposition de Jordan-Chevalley-Dunford (d’après Centrale PC 2024 )

Notations générales et définitions

Dans tout le sujet, K désigne R ou C et q est un entier naturel non nul. On note Mq(K) l’ensemble des
matrices carrées de taille q à coefficients dans K.
On dit qu’une matrice N ∈ Mq(C) est nilpotente s’il existe k ∈ N

∗ tel que Nk = 0.
Étant donné une matrice M ∈ Mq(R), on appelle racine carrée de M toute matrice B ∈ Mq(R) telle que
B2 = M .
Pour toute matrice M ∈ Mq(K) et pour tous 1 ⩽ i, j ⩽ q, on note [M ]i,j le coefficient d’indice (i, j) de M .
On dit qu’une suite (Mn)n∈N à valeurs dans Mq(K) converge vers M ∈ Mq(K) si et seulement si, pour tous
1 ⩽ i, j ⩽ q, la suite

�

[Mn]i,j
�

n∈N
converge vers [M ]i,j .

On pourra utiliser librement et sans démonstration dans tout le sujet le résultat suivant : si A ∈ Mq(K)
et si la suite (Mn)n∈N converge vers M , alors les suites (AMn)n∈N et (MnA)n∈N convergent respectivement
vers AM et MA.

Cadre de l’exercice

On fixe M ∈ Mq(C). On note λ1, . . . , λs les valeurs propres deux à deux distinctes de M (avec s ∈ N
∗). On

définit alors

P (X) =
s

Y

i=1

(X − λi).

On note P ′ le polynôme dérivé de P .

Pour tout polynôme Q =
d

X

k=0

γkXk ∈ C[X], on note Q(M) =
d

X

k=0

γkMk ∈ Mq(C) et on pose

C[M ] =
�

Q(M)|Q ∈ C[X]
	

.

On admet alors et on pourra utiliser librement que :

— si A, B ∈ C[M ], alors A et B commutent, et A + B et AB appartiennent à C[M ] ;

— Si Q ∈ C[X] et si A ∈ C[M ], alors Q(A) ∈ C[M ].

A - Une méthode de Newton matricielle

Q1. Montrer que, pour toute racine complexe µ de P ′, la matrice M − µIq est inversible. En déduire que
P ′(M) est inversible.

Q2. Montrer que le polynôme caractéristique χ
M

de M divise P q. En déduire que P (M) est nilpotente.

Grâce à ces résultats, on peut définir la suite de matrices (Mn)n∈N en posant :
(

M0 = M

∀n ∈ N, Mn+1 = Mn − P (Mn)P ′(Mn)−1

On admet que, pour tout n ∈ N :

— Mn est bien définie et appartient à Mq(C) ;

— il existe Bn ∈ C[M ] telle que P (Mn) =
�

P (M)
�2n

Bn ;

— la matrice P ′(Mn) est inversible

Q3. Montrer que la suite (Mn)n∈N est stationnaire.

Q4. Montrer que, pour tout n ∈ N, les matrices M et Mn commutent.

Q5. On note A la limite de (Mn)n∈N. Montrer que A est diagonalisable.

Q6. On pose N = M − A. Justifier que A et N commutent et que N est nilpotente.
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B - Un calcul de racine carrée pour certaines matrices réelles trigonalisables

Q7. En utilisant le développement limité en 0 de la fonction x 7→
√

1 + x, montrer qu’il existe un polynôme
Rq ∈ R[X] tel que Xq divise 1 + X − Rq(X)2.

Q8. En déduire l’expression d’une racine carrée de Iq + N lorsque N est une matrice nilpotente.

Pour les questions suivantes, on suppose que M est à coefficients réels et trigonalisable dans Mq(R) et que
le spectre de M inclus dans R

∗

+.
On considère alors les matrices A et N introduites dans la partie précédente.

Q9. Justifier que A et N sont à coefficients réels et que A est diagonalisable dans Mq(R).

Q10. Montrer que le spectre de A est inclus dans R
∗

+.

Q11. On admet qu’on peut alors construire une racine carrée A′ de A vérifiant A′ ∈ C[A].
En déduire l’expression d’une racine carrée de M .
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