Devoir surveillé n°4 bis

Vendredi 9 janvier

Le sujet comporte 6 pages et est composé d’un probléme et d’un exercice indépendants.

Les calculatrices sont interdites.

Si, au cours de l’épreuve, un candidat repére ce qui lui semble étre une erreur d’énoncé, il le signale sur sa
copie et poursuit sa composition en expliquant les raisons des initiatives qu’il est amené a prendre.
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Mines-Ponts PC 2020

Approximation par des exponentielles-polynémes

L’objectif du probleme est d’établir, par des méthodes euclidiennes, des théorémes d’approximation
par des polynomes ou des exponentielles-polynomes de certaines fonctions définies sur [0, +o0o[ ou sur R.

Les parties I et II sont indépendantes. La partie III utilise les résultats des parties I et II.

Etant donné un intervalle I de R, on appelle fonction polynomiale sur I toute fonction de la forme
n

f:I->R,z— E Aez®, ol n est un entier naturel et Ao, ..., A, des nombres réels.
k=0

|l. Résultats préliminaires

I.1. Etude d’'une série entiére

Pour tout réel x strictement positif, on pose
+oo
I['(x) :/ t* e~ tdt.
0

1) Montrer que la fonction I' est bien définie, et a valeurs strictement positives.

2) A P’aide d’une intégration par parties que 'on justifiera avec soin, montrer que I'(z + 1) = zT'(z) pour
tout z > 0.

. . . - X I'n+a+1
Soit a un réel strictement supérieur & —1. Pour tout n € N, on pose a,, = ¥
n!

3) Déterminer le rayon de convergence R de la série entiére E anz".

4) Montrer que

x)

- Tla+1
g anx" = Tla+1) pour tout = €] — R, R|.
. (1 _ p)a+l

00 +00
On pourra effectuer une permutation des symboles Z et / , que l'on justifiera soigneusement.
n=0 0

1.2. Projections orthogonales

Dans cette partie, ' désigne un R-espace vectoriel, pas nécessairement de dimension finie, muni d’un
produit scalaire (-,-). On note || - || la norme associée & ce produit scalaire, définie par |z|| = (z,z)"/?
pour tout z € F.

Soit F' un sous-espace vectoriel différent de {0} et de dimension finie de E.
5) Donner la définition de la projection orthogonale 7p sur F.

On fixe (ey,...,e,) une base orthonormale de F, et « un vecteur de E.

6) Montrer que 7p(x) = Z(x, €:)e;.
i=1
7) Montrer enfin que

n

lz —7r(@)|? = ll2l* =Dz e,

i=1
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Il. Polyndmes de Laguerre

Dans toute cette partie, on fixe un réel @ > —1, et on note E, 'ensemble des fonctions continues
+oo

f:[0,400[— R telles que l'intégrale / %" f(2)%dx est convergente.
0

a? + v?
8) Montrer que, pour tout (a,b) € R2, |ab| < 5

+oo
9) En déduire que, si f et g sont deux éléments de E,, U'intégrale / x%e™ 7 f(x)g(x)dx est convergente.
0

10) En déduire que E, est un sous-espace vectoriel de l'espace vectoriel C(]0,+oo[,R) des fonctions
continues de [0, +oo[ vers R.

11) Montrer que toute fonction polynomiale sur [0, 4+o00[ est élément de E,.
Pour tout entier naturel n, on définit les fonctions
©n :]0, +oo[— R,z s 2" %"

et
¥ 10, +o0[— R,z — x_o‘e”cp;") (x)

ou la notation <p£l") désigne la dérivée d’ordre n de ¢,, (avec la convention cp(()o) = o).

12) Calculer vy, ¥ et s.

13) Pour tout n € N, montrer que la fonction v,, est polynomiale. Préciser son degré et son coefficient
dominant.

Dans la suite, on identifie ¢, & son unique prolongement continu & [0,4o0c[, qui est une
fonction polynomiale sur [0, +oo[. Cela permet de considérer 1, comme un élément de E,,
ce qu’on fera désormais.
Pour tout (f,g) € E?, on pose
+oo
()= [ ate flalgla)da.
0

14) Montrer que (-, -) est un produit scalaire sur E,,.

Dans la suite, on note || - ||o la norme associée & ce produit scalaire, définie par

1/2

+o0
| flla = (/0 e_””:c“f(m)2dx> pour tout f € F,.

15) Soit n un entier > 1. Pour tout entier k € [0,n — 1], établir que
@%k)(a:) — 0 quand x tend vers 0 par valeurs strictement positives,

et que
o"(z) =0 (e*%) quand z — +o0.

16) Soit m et n deux entiers naturels. Montrer que

+oo
Wothn) = (1" [ 0D @)pu@)io
En déduire que la famille (1, )nen est orthogonale pour le produit scalaire (-, -).

17) Montrer que, pour tout n € N, [[4,]|2 = n!T'(n+a+1) (la fonction I' a été définie dans la partie I).
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I1l. Approximation
On conserve les hypothéses et notations de la partie II. Pour tout entier naturel k, on définit la fonction
fr 1 [0, +00[= R,z +— e~ *,

qui est élément de E, (on ne demande pas de le vérifier).

Pour tout N € N, on note Vi le sous-espace vectoriel de E, engendré par la famille finie (1,)y<,, <y, €t
on note my la projection orthogonale de E,, sur Vy. o

00 2
18) Soit k € N. Montrer l'existence de la somme Z (i, ) , et calculer sa valeur.

Z Tl
19) En déduire que, pour tout k € N, || fx — 7n(f&)]la — 0 quand N — +o0.
Dans la suite, on note P le sous-espace vectoriel de E,, constitué des fonctions polynomiales.

20) Montrer que, pour tout k € N et tout € > 0, il existe p € P telle que || fx — p|la < €.

Soit f : [0,4+00[— R une fonction continue tendant vers 0 en +oo. Il est facile de vérifier (ce n’est pas
demandé) que f € E,.

21) Montrer que, pour tout € > 0, il existe un entier naturel n ainsi que des réels Ao, ..., A, tels que
n
Hf > Mfi|| <e
k=0 o

On pourra utiliser la fonction

F(=Int) si t €]0,1]

g:[O,l]—>R,tb—>{ 0sit=0

et le résultat admis suivant : si ¢ : [0,1] — R est une fonction continue, alors, pour tout £ > 0, il existe
une fonction polynomiale p : [0,1] — R telle que |¢p(¢) — p(t)| < e pour tout ¢ € [0, 1].

22) Montrer que, pour tout € > 0, il existe p € P telle que || f — plla < e.

23) Soit h : R — R une fonction continue, paire et nulle en dehors d’un segment [—A, A] (4 > 0).
Montrer que, pour tout € > 0, il existe une fonction polynomiale p : R — R telle que

/+OO (h(a:) - p(w)e‘é)2 dx < e.

— 0o

On pourra appliquer le résultat de la question 22) & la fonction f : [0, +oc[— R,z + h(\/T)e? et & un
« bien choisi.

On peut montrer que le résultat de la question 28) est en réalité valable pour toute fonction h : R — R
continue et de carré intégrable sur R.

FIN DU PROBLEME
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Exercice 2. Décomposition de Jordan-Chevalley-Dunford (d’aprés Centrale PC 2024)

Notations générales et définitions

Dans tout le sujet, K désigne R ou C et ¢ est un entier naturel non nul. On note M ,(K) I’ensemble des
matrices carrées de taille ¢ a coefficients dans K.

On dit qu’une matrice N € M (C) est nilpotente s’il existe k € N* tel que Nk =o0.

Etant donné une matrice M € My (R), on appelle racine carrée de M toute matrice B € My(R) telle que
B% = M.

Pour toute matrice M € My(K) et pour tous 1 < i,j < ¢, on note [M]; ; le coefficient d’indice (4, j) de M.
On dit qu’'une suite (M, )nen & valeurs dans M, (K) converge vers M € M (K) si et seulement si, pour tous
1<i,j < g, lasuite ([Mp);;), . converge vers [M]; ;.

On pourra utiliser librement et sans démonstration dans tout le sujet le résultat suivant : si A € M (K)
et si la suite (Mp,),en converge vers M, alors les suites (AM,,)nen et (MpA)pen convergent respectivement
vers AM et MA.

Cadre de ’exercice

On fixe M € M,(C). On note Ay, ..., As les valeurs propres deux a deux distinctes de M (avec s € N*). On

définit alors .

P(X)=]](x—N).

i=1
On note P’ le polynéme dérivé de P.
d d
Pour tout polynéme @ = Z v, X* € C[X], on note Q(M) = Z v M* € M,(C) et on pose
k=0 k=0

ClM] ={Q(M)|Q € C[X]}.
On admet alors et on pourra utiliser librement que :
— si A, B € C[M], alors A et B commutent, et A+ B et AB appartiennent a C[M];
— SiQ € C[X] et si A e C[M], alors Q(A) € C[M].
A - Une méthode de Newton matricielle

Q1. Montrer que, pour toute racine complexe p de P’, la matrice M — pl, est inversible. En déduire que
P'(M) est inversible.

Q2. Montrer que le polynéme caractéristique x,, de M divise P?. En déduire que P(M) est nilpotente.

Gréce a ces résultats, on peut définir la suite de matrices (Mp,),cn en posant :

My=M
Vn €N, Myy1 = M, — P(M,)P'(M,)!

On admet que, pour tout n € N :
— M, est bien définie et appartient & My(C);
— il existe B, € C[M] telle que P(M,,) = (P(M))* By,

— la matrice P'(M,,) est inversible

Q3. Montrer que la suite (M, ),en est stationnaire.
Q4. Montrer que, pour tout n € N, les matrices M et M,, commutent.
Q5. On note A la limite de (M,,),en. Montrer que A est diagonalisable.

Q6. On pose N = M — A. Justifier que A et N commutent et que N est nilpotente.
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B - Un calcul de racine carrée pour certaines matrices réelles trigonalisables

Q7. En utilisant le développement limité en 0 de la fonction z — /1 + x, montrer qu’il existe un polynéme
R, € R[X] tel que X7 divise 1 + X — R, (X)2.
Q8. En déduire I'expression d’une racine carrée de I, + N lorsque N est une matrice nilpotente.

Pour les questions suivantes, on suppose que M est a coefficients réels et trigonalisable dans M,(R) et que
le spectre de M inclus dans RY .
On considere alors les matrices A et N introduites dans la partie précédente.

Q9. Justifier que A et N sont a coefficients réels et que A est diagonalisable dans M (R).
Q10. Montrer que le spectre de A est inclus dans R

Q11. On admet qu’on peut alors construire une racine carrée A’ de A vérifiant A" € C[A].
En déduire I'expression d’une racine carrée de M.
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